SKUs and Pricing

Before we start with the benchmarks, we first want to see what you get for your money. Let's compare the AMD chips with Intel's offerings. To reduce the clutter, we did not list all of the SKUs but have tried to include useful points of comparison.

AMD vs. Intel 2-socket SKU Comparison
Xeon
E5
Cores/
Threads
TDP Clock Speed
(GHz)
Price Opteron Modules/
Integer
cores
TDP Clock Speed
(GHz)
Price
High Performance High Performance
2697v2 12/24 130W 2.7-3.5 $2614          
2695v2 12/24 115W 2.4-3.2 $2336          
2687Wv2 8/16 150W 3.4-4.0 $2108          
2680v2 10/20 115W 2.8-3.6 $1723          
2680(*) 8/16 130W 2.7-3.5 $1723          
2660v2 10/20 115W 2.2-3.0 $1389 6386SE 8/16 140W 2.8-3.5 $1392
Midrange Midrange
2650v2 8/16 95W 2.6-3.4 $1166 6380 8/16 115W 2.5-3.4 $1088
2640v2 8/16 95W 2.0-2.5 $885          
          6376 8/16 115W 2.3-3.2 $703
Budget Budget
2630v2 6/12 80W 2.6-3.1 $612 6348 6/12 115W 2.8-3.4 $575
2620v2 6/12 80W 2.1-2.6 $406 6234 6/12 115W 2.4-3.0 $415
Power Optimized Power Optimized
2650Lv2 10/20 70W 1.7-2.1 $1219          
2630Lv2 6/12 70W 2.4-2.8 $612 6366HE 8/16 85W 1.8-3.1 $575

(*) Sandy Bridge based Xeon, for reference purposes

The lack of competition at the high-end cannot be more obvious. AMD simply does not have anything competitive at the moment in that part of the market. However, Intel and the OEMs still have to convince the data center people to keep the upgrade cycles relatively short. If you look at the the E5 2680 v2, you get two extra cores, a 100MHz clock speed bump and a lower TDP compared to the predecessor E5 2680. Intel charges more for the best Xeons, but you do get more for your money.

The most expensive Xeon (at 130W TDP) is a lot more expensive, but that is no surprise given the fact that it it is an expensive chip to make with such a massive die (12 cores, 30MB L3, two separate memory controllers).

Every Opteron has been relegated to the lower-end and midrange segments, and it is not looking good. We know that the AMD Opteron needs more threads or clock speed to keep up with the previous Xeon E5 performance wise. The midrange and budget AMD Opterons no longer have that advantage, and they need more power too. A price cut looks to be necessary, although an Opteron server is typically less expensive than a similar Xeon system.

Improvements, Continued Benchmarking Configuration
Comments Locked

70 Comments

View All Comments

  • Bytales - Tuesday, September 17, 2013 - link

    Please make some gaming related tests. Im planning on upgrading from 2x2609 to 2x2690v2, now that i now for sure that 10 cores 25 mb cache is a complete die. I dont trust verz much the design on the 12 core die, its not how i would design the CPU. Besides the 2690v2 is 3ghz base and 3.6 boost, perfect for gaming.

    Would have like to see how a 2690v2 would compare with a 2687w v2 in gaming related tests, seeing as the latter has a 3.4 base 4 ghz boost but 2 cores less.

    Anyways, im not pazing 3000+ euros on disabled die (like the one in 2687v2) so the 10 core is my choice, but still would have like to seee how higher freq lower core count would impact gaming performance !
  • mking21 - Wednesday, September 18, 2013 - link

    I can tell you now that the 8 core is going to kick the 10 core's ass for gaming. The higher clock will win here. So as you are going to pay 3000 euros you may as well get the best, even if it does have two cores disabled. But I do agree for me a more interesting comparison would have been 12 vs 10 vs 8 all V2s all fastest clock available versions...
  • mapesdhs - Wednesday, September 18, 2013 - link


    IMO for gaming you'd be better off with a used oc'd 2700K. I just bought one for 160 UKP,
    fitted with a used TRUE (cost 15), two new Coolermaster Blademaster fans, Q-fan active
    (ASUS M4E mbd, used, cost 130), runs at 5GHz no problem, silent running when idle. See:

    http://valid.canardpc.com/a64s8p

    The vast majority of games gain the most from a sensible middle ground between
    multiple cores and a high clock. Few will properly exploit more than 4 cores with HT.
    Using a multi-core XEON for gaming is silly. You would see far greater gaming
    performance by getting a much cheaper 4/6-core and spending the saved cash on
    more powerful GPUs like two 780 or Titans SLI, or two 7970 CF, etc. A 4-core Z68
    should be just fine, though if you do want oodles of PCIe lanes for high-end SLI/CF
    then I'd get X79 and a 3930K (don't see the point of IB-E).

    Trust me, a 5GHz 2700K, or a 4.7GHz 3930K, paired with two much better GPUs
    via the saved money, will be massively better for gaming vs. what you could afford
    having spent thousands on two 10 or 12-core CPUs with much lower clocks. Most
    2600Ks will oc pretty nicely too.

    Bytales, what GPU(s) do you have in your system atm?

    Ian.

    PS. IB/HW are a waste of time. They don't oc aswell as SB. I bought a 2500K for 125, only
    took 3 mins to get it running 4.7 stable on a used Gigabyte Z68 board (which cost a mere 35).
  • Bytales - Saturday, September 21, 2013 - link

    The reason im looking at xeons is because of the motherboard i own, which is the z9ped8ws, which i bought because i need the pci express lanes two xeons provide. No other motherboard could have gottwn me what this one does, and i have looked everywhere. Thats the reason i need these xeons. I originally bought two 2609 cpus and a crossfire tahiti le(one burned down due to bitcoin mining) their purpose were/are to make the pc usable until the new xeons and the new radeons wil become available. I know i wont be getting the best possible cpus for gaming on this platform. I just want some decent performers. The 2609 i have now are 2.4 ghz no boost no HT, and did their job good so far. Im expecting decent gaming performance out of a 3ghz chip with multiple cores. Sure, i could get the 2687wv2 for the same price, but i have a hate for disabled things. Why the hell didnt they make a 10 core chip with 25 mb cache 3.5 base 4ghz boost and 150 160 w tdp. I would have bought such a cpu. But as it is ill have to make due with two 2690. Maybe, just maybe, if i see some gaming benchmarks between the two cpus, i will consider the 2687wv2. Untill then, my first choice is the 2690.
    Hopefully, the people from anandtwch will test this aspect of the cpus, gaming that is, becauae all they tested was server/enterpriae stuff, which was to be expected after all.
    Gaming was not what these cpus were built for. But i like having strong cpus which will have my back if i decie to do some other stuff as well. I do bunch of converting, compressing, autocad photoshop. Etc. Thats why more cores. The better.
  • Ktracho - Thursday, October 3, 2013 - link

    I would think you can get the PCIe lanes you want with a motherboard that has a PLX bridge chip, such as the ASUS P9X79-E WS, without needing to resort to a two-socket motherboard. As far as gaming, I think the E5-1620 v2 gives good bang for the money, and if you need more cores, the E5-1650 v2 does well, too. If you need a little better performance, you can get the E5-1680 v2, but at a price. Too bad Intel doesn't sell single-socket CPU versions with more than 6 cores, though.
  • MrSpadge - Tuesday, September 17, 2013 - link

    The Xeon2660v2 could in theory be what Ivy-E should have been for enthusiasts: something at least a bit more worth spending big $ on. The mainboard would have to let us enable multi-core turbo and OC the bus though.
  • psyq321 - Tuesday, September 17, 2013 - link

    Situation with IvyBridge EP is absolutely the same as with Sandy Bridge EP:

    - No BCLK "straps" (or ratios) for Xeon line - only 100 MHz allowed
    - No unlocked multipliers
    - BCLK overclocking works - your mileage may vary. I can get up to 105 MHz with dual Xeon 2697 v2 setup on Z9PE D8 WS

    So, Ivy Bridge EP Xeons do not overclock particularly well - the best you can get out of 2S parts (26xx v2) is 100-150 MHz depending on the max. turbo multiplier your SKU has.
  • ezekiel68 - Wednesday, September 18, 2013 - link

    Johan, what do you mean by "...over four NUMA nodes" in the last sentence on the Compression And Decompression page?

    My understanding is that for both Opeteron and Xeon, a NUMA node is a complete CPU package (with all its cores) and the associated RAM directly connected to that CPU's memory controllers. In the charts, all of the Opterons are listed as "2x Opteron XXXX". Are you considering each die within the Opteron MCM package to be a separate NUMA node -- or how else are you coming up with "four" above?
  • JohanAnandtech - Friday, September 20, 2013 - link

    AFAIK, the two dies in the package communicate via hypertransport links and it is quicker for one die to communicate with its own memory than with the memory attached to the second die.
  • ddkeenan - Wednesday, September 18, 2013 - link

    The data in this article is incomplete. The JVM tuning used is targeted for throughput alone, basically ignoring GC pause times. The critical jOPS metric is intended to measure with response time constraints, and the results posted here are most likely highly variable and definitely dreadfully low because of the poor tuning choices.

    Actual customers care more about response time/latency these days. Throughput is often solved by scaling horizontally, response time is not. Commercial benchmarking should try to reflect that desire by focusing on response time and the SPECjbb2013 critical jOPS in order to influence hardware and software vendors to compete.

    Finally, to Kevin G, I think it's also likely that SPARC T-series systems have been focusing on customer metrics more than competitive benchmarks, and now there's a benchmark that takes response time into consideration.

Log in

Don't have an account? Sign up now