Benchmark Configuration & method

This review is mostly focused on performance. We have included the Xeon E5-2697 v2 (12 cores at 2.7-3.5GHz) and Xeon E5-2650L v2 (10 cores at 1.7GHz-2.1GHz) to categorize the performance of the high-end and lower-midrange new Xeons. That way, you can get an idea of where the rest of the 12 and 10 core Xeon SKUs will land. We also have the previous generation E5-2690 and E5-2660 so we can see the improvements from the new architecture. This also allows us to gauge how competitive the Opteron "Piledriver" 6300 is.

Intel's Xeon E5 server R2208GZ4GSSPP (2U Chassis)

CPU Two Intel Xeon processor E5-2697 v2 (2.7GHz, 12c, 30MB L3, 130W)

Two Intel Xeon processor E5-2690 (2.9GHz, 8c, 20MB L3, 135W)

Two Intel Xeon processor E5-2660 (2.2GHz, 8c, 20MB L3, 95W)

Two Intel Xeon processor E5-2650L v2 (1.7GHz, 10c, 25MB L3, W)
RAM 64GB (8x8GB) DDR3-1600 Samsung M393B1K70DH0-CK0

or

128GB (8 x 16GB) Micron MT36JSF2G72PZ – BDDR3-1866
Internal Disks 2 x Intel MLC SSD710 200GB
Motherboard Intel Server Board S2600GZ "Grizzly Pass"
Chipset Intel C600
BIOS version SE5C600.86B (August the 6th, 2013)
PSU Intel 750W DPS-750XB A (80+ Platinum)

The Xeon E5 CPUs have four memory channels per CPU and support up to DDR3-1866, and thus our dual CPU configuration gets eight DIMMs for maximum bandwidth. The typical BIOS settings can be found below.

Supermicro A+ Opteron server 1022G-URG (1U Chassis)

CPU Two AMD Opteron "Abu Dhabi" 6380 at 2.5GHz

Two AMD Opteron "Abu Dhabi" 6376 at 2.2GHz
RAM 64GB (8x8GB) DDR3-1600 Samsung M393B1K70DH0-CK0
Motherboard SuperMicro H8DGU-F
Internal Disks 2 x Intel MLC SSD710 200GB
Chipset AMD Chipset SR5670 + SP5100
BIOS version v2.81 (10/28/2012)
PSU SuperMicro PWS-704P-1R 750Watt

The same is true for the latest AMD Opterons: eight DDR3-1600 DIMMs for maximum bandwidth. You can check out the BIOS settings of our Opteron server below.

C6 is enabled, TurboCore (CPB mode) is on.

Common Storage System

To minimize different factors between our tests, we use our common storage system to provide LUNs via iSCSI. The applications are placed on a RAID-50 LUN of ten Cheetah 15k5 disks inside a Promise JBOD J300, connected to an Adaptec 5058 PCIe controller. For the more demanding applications (Zimbra, PhpBB), storage is provided by a RAID-0 of Micron P300 SSDs, with a 6 Gbps Adaptec 72405 PCIe raid controller.

Software Configuration

All vApus testing is done on ESXi vSphere 5 — VMware ESXi 5.1. All vmdks use thick provisioning, independent, and persistent. The power policy is "Balanced Power" unless otherwise indicated. All other testing is done on Windows 2008 Enterprise R2 SP1. Unless noted otherwise, we use the "High Performance" setting on Windows 2008 R2 SP1.

Other Notes

Both servers are fed by a standard European 230V (16 Amps max.) powerline. The room temperature is monitored and kept at 23°C by our Airwell CRACs. We use the Racktivity ES1008 Energy Switch PDU to measure power consumption. Using a PDU for accurate power measurements might seem pretty insane, but this is not your average PDU. Measurement circuits of most PDUs assume that the incoming AC is a perfect sine wave, but it never is. However, the Rackitivity PDU measures true RMS current and voltage at a very high sample rate: up to 20,000 measurements per second for the complete PDU.

Positioning: SKUs and Servers Virtualization Performance
Comments Locked

70 Comments

View All Comments

  • ShieTar - Tuesday, September 17, 2013 - link

    Oops, you are perfectly right of course. In that case the 4960X actually gets the slightly better efficiency (12.08 is 0.28 per thread and GHz) than the dual 2697s (33.56 is 0.26 per thread and GHz), which makes perfect sense.

    It also indicates the 4960X gets about 70% of the performance of a single 2697 at 38% of the cost. Then again, a 1270v3 gets you 50% of the performance at 10% of the price. So when talking farms (i.e. more than one system cooperating), four single-socket boards with 1270v3 will get you almost the power of a dual-socket board with 2697v2 (minus communication overhead), will likely use similar power demand (plus communication overhead), and save you $4400 in the process. Since you use 32 instead of 48 threads, but 4 installations instead of 1, software licensing cost may vary strongly in either direction.

    Would be interesting to see this tested. Anybody willing to send AT four single-socket workstations?
  • hpvd - Tuesday, September 17, 2013 - link

    yes - this would be really interesting. But you should use Infiniband interconnect for a good scaling. And this could only be done without an expensive IB-Switch with 3-maschines...
  • DanNeely - Tuesday, September 17, 2013 - link

    Won't the much higher price of a 4 socket board kill any CPU cost savings?

    In any event, the 1270v3 is a unisocket chip so you'd need to do 4 boxes to cluster.

    Poking around on Intel's site it looks like all 1xxx Xeons are uniprocessor, 2xxx is dual socket, 4xxx quad, 8xxx octo socket. But the 4xxx series is still on 2012 models and 8xxx on 2011 releases. The 4 way chips could just be a bit behind the 2way ones being reviewed now; but with the 8 way ones not updated in 2 years I'm wondering if they're being stealth discontinued due to minimal cases where 2 smaller servers aren't a better buy.
  • hpvd - Tuesday, September 17, 2013 - link

    I think we are talking around about 4 systems with each one cpu, one mainboard, RAM, ..+ network interface card
  • hpvd - Tuesday, September 17, 2013 - link

    another advantage would be that these CPUs uses the latest Hashwell Achitecture: some workloads would greatly benefit from it's AVX2 ...
  • Kevin G - Tuesday, September 17, 2013 - link

    I'd fathom the bigger benefit of Haswell is found in the TSX and L4 cache for server workloads. The benefits of AVX2 would be exploited in more HPC centric workloads. Now if Intel would just release a socketed 1200v3 series CPU with L4 cache.
  • MrSpadge - Tuesday, September 17, 2013 - link

    > Now if Intel would just release a socketed 1200v3 series CPU with L4 cache.

    Agreed! And someone would test it at server loads. And BOINC. And if only Intel would release an overclockalbe Haswell with L4 which we can actually buy!
  • ShieTar - Tuesday, September 17, 2013 - link

    A 4 socket board is expensive, but thats not the discussion I was making. A Xeon E5-4xxx is not likely to be less expensive than the E5-2xxx part anyways.

    The question was specifically how four single socket boards (with 4 cores each, at 3.5GHz, and Haswell technology) would position themselves against a dual-socket board with 24 cores at 2.7GHz and Ivy Bridge EP tech. Admittedly, the 3 extra boards will add a bit of cost (~500$), and and extra memory & communications cards, etc. can also add something depending on usage scenario. Then again, a single 4-core might get the work done with less than half the memory of a 12-core, so you might safe a little there as well.
  • psyq321 - Tuesday, September 17, 2013 - link

    E5-46xx v2 is coming in few months, qualification samples are already available and for all intents and purposes it is ready - Intel just needs to ramp-up production.

    E7-88xx v2 is coming in Q1 2014, it is definitely not discontinued, and the platform (Brickland) will be compatible with both Ivy Bridge EX (E7-88xx v2 among others) and Haswell EX (E7-88xx v3 among others) CPUs and will also be able to take DDR4 RAM. It will require different LGA 2011 socket, though.

    EX platform will come with up to 15 cores in Ivy Bridge EX generation.
  • Kevin G - Tuesday, September 17, 2013 - link

    The E5-46xxx is simply a rebranded E5-26xx with official support for quad socket. The dies are the going to be the same between both families. Intel is just doing extra validation for the quad socket market as the market tends to favor more reliability features as socket count goes up.

    While not socket compatible, Brickland as a platform is expected to be used for the next (last?) Itanium chips.

Log in

Don't have an account? Sign up now