SKUs and Pricing

Before we start with the benchmarks, we first want to see what you get for your money. Let's compare the AMD chips with Intel's offerings. To reduce the clutter, we did not list all of the SKUs but have tried to include useful points of comparison.

AMD vs. Intel 2-socket SKU Comparison
Xeon
E5
Cores/
Threads
TDP Clock Speed
(GHz)
Price Opteron Modules/
Integer
cores
TDP Clock Speed
(GHz)
Price
High Performance High Performance
2697v2 12/24 130W 2.7-3.5 $2614          
2695v2 12/24 115W 2.4-3.2 $2336          
2687Wv2 8/16 150W 3.4-4.0 $2108          
2680v2 10/20 115W 2.8-3.6 $1723          
2680(*) 8/16 130W 2.7-3.5 $1723          
2660v2 10/20 115W 2.2-3.0 $1389 6386SE 8/16 140W 2.8-3.5 $1392
Midrange Midrange
2650v2 8/16 95W 2.6-3.4 $1166 6380 8/16 115W 2.5-3.4 $1088
2640v2 8/16 95W 2.0-2.5 $885          
          6376 8/16 115W 2.3-3.2 $703
Budget Budget
2630v2 6/12 80W 2.6-3.1 $612 6348 6/12 115W 2.8-3.4 $575
2620v2 6/12 80W 2.1-2.6 $406 6234 6/12 115W 2.4-3.0 $415
Power Optimized Power Optimized
2650Lv2 10/20 70W 1.7-2.1 $1219          
2630Lv2 6/12 70W 2.4-2.8 $612 6366HE 8/16 85W 1.8-3.1 $575

(*) Sandy Bridge based Xeon, for reference purposes

The lack of competition at the high-end cannot be more obvious. AMD simply does not have anything competitive at the moment in that part of the market. However, Intel and the OEMs still have to convince the data center people to keep the upgrade cycles relatively short. If you look at the the E5 2680 v2, you get two extra cores, a 100MHz clock speed bump and a lower TDP compared to the predecessor E5 2680. Intel charges more for the best Xeons, but you do get more for your money.

The most expensive Xeon (at 130W TDP) is a lot more expensive, but that is no surprise given the fact that it it is an expensive chip to make with such a massive die (12 cores, 30MB L3, two separate memory controllers).

Every Opteron has been relegated to the lower-end and midrange segments, and it is not looking good. We know that the AMD Opteron needs more threads or clock speed to keep up with the previous Xeon E5 performance wise. The midrange and budget AMD Opterons no longer have that advantage, and they need more power too. A price cut looks to be necessary, although an Opteron server is typically less expensive than a similar Xeon system.

Improvements, Continued Benchmarking Configuration
Comments Locked

70 Comments

View All Comments

  • ShieTar - Tuesday, September 17, 2013 - link

    Oops, you are perfectly right of course. In that case the 4960X actually gets the slightly better efficiency (12.08 is 0.28 per thread and GHz) than the dual 2697s (33.56 is 0.26 per thread and GHz), which makes perfect sense.

    It also indicates the 4960X gets about 70% of the performance of a single 2697 at 38% of the cost. Then again, a 1270v3 gets you 50% of the performance at 10% of the price. So when talking farms (i.e. more than one system cooperating), four single-socket boards with 1270v3 will get you almost the power of a dual-socket board with 2697v2 (minus communication overhead), will likely use similar power demand (plus communication overhead), and save you $4400 in the process. Since you use 32 instead of 48 threads, but 4 installations instead of 1, software licensing cost may vary strongly in either direction.

    Would be interesting to see this tested. Anybody willing to send AT four single-socket workstations?
  • hpvd - Tuesday, September 17, 2013 - link

    yes - this would be really interesting. But you should use Infiniband interconnect for a good scaling. And this could only be done without an expensive IB-Switch with 3-maschines...
  • DanNeely - Tuesday, September 17, 2013 - link

    Won't the much higher price of a 4 socket board kill any CPU cost savings?

    In any event, the 1270v3 is a unisocket chip so you'd need to do 4 boxes to cluster.

    Poking around on Intel's site it looks like all 1xxx Xeons are uniprocessor, 2xxx is dual socket, 4xxx quad, 8xxx octo socket. But the 4xxx series is still on 2012 models and 8xxx on 2011 releases. The 4 way chips could just be a bit behind the 2way ones being reviewed now; but with the 8 way ones not updated in 2 years I'm wondering if they're being stealth discontinued due to minimal cases where 2 smaller servers aren't a better buy.
  • hpvd - Tuesday, September 17, 2013 - link

    I think we are talking around about 4 systems with each one cpu, one mainboard, RAM, ..+ network interface card
  • hpvd - Tuesday, September 17, 2013 - link

    another advantage would be that these CPUs uses the latest Hashwell Achitecture: some workloads would greatly benefit from it's AVX2 ...
  • Kevin G - Tuesday, September 17, 2013 - link

    I'd fathom the bigger benefit of Haswell is found in the TSX and L4 cache for server workloads. The benefits of AVX2 would be exploited in more HPC centric workloads. Now if Intel would just release a socketed 1200v3 series CPU with L4 cache.
  • MrSpadge - Tuesday, September 17, 2013 - link

    > Now if Intel would just release a socketed 1200v3 series CPU with L4 cache.

    Agreed! And someone would test it at server loads. And BOINC. And if only Intel would release an overclockalbe Haswell with L4 which we can actually buy!
  • ShieTar - Tuesday, September 17, 2013 - link

    A 4 socket board is expensive, but thats not the discussion I was making. A Xeon E5-4xxx is not likely to be less expensive than the E5-2xxx part anyways.

    The question was specifically how four single socket boards (with 4 cores each, at 3.5GHz, and Haswell technology) would position themselves against a dual-socket board with 24 cores at 2.7GHz and Ivy Bridge EP tech. Admittedly, the 3 extra boards will add a bit of cost (~500$), and and extra memory & communications cards, etc. can also add something depending on usage scenario. Then again, a single 4-core might get the work done with less than half the memory of a 12-core, so you might safe a little there as well.
  • psyq321 - Tuesday, September 17, 2013 - link

    E5-46xx v2 is coming in few months, qualification samples are already available and for all intents and purposes it is ready - Intel just needs to ramp-up production.

    E7-88xx v2 is coming in Q1 2014, it is definitely not discontinued, and the platform (Brickland) will be compatible with both Ivy Bridge EX (E7-88xx v2 among others) and Haswell EX (E7-88xx v3 among others) CPUs and will also be able to take DDR4 RAM. It will require different LGA 2011 socket, though.

    EX platform will come with up to 15 cores in Ivy Bridge EX generation.
  • Kevin G - Tuesday, September 17, 2013 - link

    The E5-46xxx is simply a rebranded E5-26xx with official support for quad socket. The dies are the going to be the same between both families. Intel is just doing extra validation for the quad socket market as the market tends to favor more reliability features as socket count goes up.

    While not socket compatible, Brickland as a platform is expected to be used for the next (last?) Itanium chips.

Log in

Don't have an account? Sign up now