The Winds of Change

My reason for writing this article is that a wind of change is blowing through the storage market. The success of cloud storage such as Amazon S3 and Syncplicity has opened the way to new methods of archiving, making backups, and even disaster recovery. But the biggest disruptor is of course flash memory, and more specifically PCIe SSDs.

PCIe SSDs are not bandwidth limited by the SATA/SAS wiring and (if implemented well) protocol overhead. As a result, PCIe drives have up to three times as many channels of flash memory. And well-designed PCIe SSDs do not have to carry the burden of RAID controllers and protocols that were architectured for hard drives with completely different characteristics than flash memory. But even if they use a PCIe/SAS bridge, PCIe SSDs offer higher reliability and vastly superior performance than the best enterprise drives. But there is much more going on.

As PCIe SSDs offer large capacities (up to 10TB!) and performance in a very small form factor, they open new markets. It is interesting to see the completely new solutions that are now available, solutions that are much better suited for certain workloads. One example of a workload where traditional SANs fall short is virtual desktops.

Virtual Desktops

Virtual desktops like Xendesktop or VMware View have been promising significant energy and cost savings, but these savings almost never materialize in reality. The energy saving claims made a few years ago were ridiculous; they were based on the assumption that we are still using power hogging desktops. Replace those with thin clients and you magically get massive energy savings.

The reality is that most of the IT professionals already use a 20-30W portable instead of an old 150W desktop, and the extra server load was not helping save energy either. Even if portables were not used, many business desktops today sip small amounts of energy. And if there was any miraculous energy saving, the additional complex storage system would be the final blow. The end result of desktop virtualization is often higher instead of lower energy bills. But perhaps worse is that knowledge workers hated most of the virtual desktops project with a passion. Suddenly several actions that used to complete without any noticeable response time became laggy.

Although there were serious costs savings if your desktop deployment and management was just organized chaos, every organization that replaced PCs with virtual desktops faced the need for huge investments. As lots of people boot up their virtual desktop in the morning, massive amounts of data is written and read in a rather random way: the so called “boot storm”. The solution was to boot up the desktops in a staggered way, tens of minutes before the arrival of the users, and to perform all kinds of special optimizations all over the software stack. But that is hardly more than a band-aid: what about unexpected hot fix patches, or what if people arrive a little bit earlier on occasion?

Data source: NetApp News 2013

Astute readers understand that the administration of virtual desktops is quite a bit more complex than the traditional setup with roaming profiles and saving files on a centralized file server. Only the most recent and high-end SANs could really deal with these specific requirements. Granted, some of the essential storage tasks like backup and archiving are a lot easier once you have a SAN in place… but mostly after you have invested in all kinds of expensive management software. When you start to invest in a complex SAN platform, the costs seem to multiply like rabbits.

In short, although a fast SAN seemed to be an enabler, they were also a deal breaker in the virtual desktop world. They're too slow and/or too expensive, and they're also power hungry.

Several companies feel they have a much better alternative and it is very interesting to see how the Fusion–IO and Intel PCIe SSDs are being turned into innovative and specialized alternatives for the typical SAN solution. Let's discuss a few of these over the next several pages.

Introduction: Enterprise Storage 101 Nutanix: No More SAN
Comments Locked

60 Comments

View All Comments

  • Jammrock - Monday, August 5, 2013 - link

    Great write up, Johan.

    The Fusion-IO ioDrive Octal was designed for the NSA. These babies are probably why they could spy on the entire Internet without ever running low on storage IO. Unsurprisingly that bit about the Octal being designed for the US government is no longer on their site :)
  • Seemone - Monday, August 5, 2013 - link

    I find the lack of ZFS disturbing.
  • Guspaz - Monday, August 5, 2013 - link

    Yeah, you could probably get pretty far throwing a bunch of drives into a well configured ZFS box (striped raidz2/3? Mirrored stripes? Balance performance versus redundancy and take your pick) and throwing some enterprise SSDs in front of the array as SLOG and/or L2ARC drives.

    In fact, if you don't want to completely DIY, as many enterprises don't, there are companies selling enterprise solutions doing exactly this. Nexenta, for example (who also happen to be one of the lead developers behind modern opensource ZFS), sell enterprise software solutions for this. There are other companies that sell hardware solutions based on this and other software.
  • blak0137 - Monday, August 5, 2013 - link

    Another option for this would be to go directly to Oracle with their ZFS Storage Appliances. This gives companies the very valuable benefit of having hardware and software support from the same entity. They also tend to undercut the entrenched storage vendors on price as well.
  • davegraham - Tuesday, August 6, 2013 - link

    *cough* it may be undercut on the front end but maintenance is a typical Oracle "grab you by the chestnuts" type thing.
  • Frallan - Wednesday, August 7, 2013 - link

    More like "grab you by the chestnuts - pull until they rips loose and shove em up where they don't belong" - type of thing...
  • davegraham - Wednesday, August 7, 2013 - link

    I was being nice. ;)
  • equals42 - Saturday, August 17, 2013 - link

    And perhaps lock you into Larry's platform so he can extract his tribute for Oracle software? I think I've paid for a week of vacation on Ellison's Hawaiian island.

    Everybody gets their money to appease shareholders somehow. Either maintenance, software, hardware or whatever.
  • Brutalizer - Monday, August 5, 2013 - link

    Discs have grown bigger, but not faster. Also, they are not safer nor more resilient to data corruption. Large amounts of data will have data corruption. The more data, the more corruption. NetApp has some studies on this. You need new solutions that are designed from the ground up to combat data corruption. Research papers shows that ntfs, ext, etc and hardware raid are vulnerable to data corruption. Research papers also show that ZFS do protect against data corruption. You find all papers on wikipedia article on zfs, including papers from NetApp.
  • Guspaz - Monday, August 5, 2013 - link

    It's worth pointing out, though, that enterprise use of ZFS should always use ECC RAM and disk controllers that properly report when data has actually been written to the disk. For home use, neither are really required.

Log in

Don't have an account? Sign up now