Conclusion

The enterprise SSD market has undergone major shifts from a few years ago. PCIe SSDs have expanded from an expensive niche to include a broad range of mainstream products. It's no longer possible to carve the market up into just a few clear segments; the enterprise SSD market is a rich spectrum of options. We're further than ever from having a one size fits all approach to storage.

But at the same time, we're as close as we'll ever get to seeing the market dominated by one kind of memory. TLC NAND has pushed MLC NAND out of the market. QLC, 3D XPoint and Z-NAND are all still niche memories compared to the vast range that TLC currently covers. We tested enterprise SSDs from a variety of market segments: two tiers of SATA SSD and a range of NMVe from a low-power 1TB M.2 up to power-hungry multi-TB U.2 and add-in card drives.

The latest Samsung enterprise SATA drives show that SATA is far from a dying legacy technology. The SATA drives often come out on top of our power efficiency ratings: with power draw that largely stays in the 2-3W range, they can compete in IOPS per Watt even when the raw performance is much slower than the NVMe drives. And the SATA drives aren't always far behind on performance: the smaller and slower NVMe drives don't have a huge advantage in steady-state write performance compared to SATA drives of the same capacity. Granted, most of these drives are intended for heavily read-oriented workloads, and it no longer makes sense to make a high-endurance write-oriented SATA drive because then the interface would be more of a bottleneck than the NAND flash itself.

Where the NVMe drives shine is in delivering read performance far beyond what a single SATA link can handle, and this carries over to relatively read-heavy mixed workloads. The downsides of these drives are higher cost and higher power consumption. Their power efficiency is only competitive with the SATA drives if the NVMe drives are pushed to deliver the most performance their controllers can handle. That usually means higher queue depths than needed to saturate a SATA drive, and it often means that a higher capacity drive is needed as well: the 1TB and 2TB NVMe drives often don't have enough flash memory to keep the controller busy. The big, power-hungry controllers used in high-end NVMe SSDs are most worthwhile when paired with several TB of flash. Samsung's 983 DCT uses the same lower-power NVMe controller as their consumer NVMe drives, and its sweet spot is clearly at lower capacities than the ideal for the Intel P4510 or Memblaze PBlaze5.

The choice between SATA, low-power NVMe and high-end NVMe depends on the workload, and each of those market segments has a viable use case in today's market. The SATA drives are by far the cheapest way to put the most TB of flash into a single server, and in aggregate they can deliver high performance and great performance per Watt. Their downside is in applications requiring high performance per TB: datasets that aren't very large, but are very hot. It takes hours to read or write the entire capacity of a 4TB SATA SSD. A handful of 4TB SATA SSDs can easily be large enough while not offering enough aggregate performance. In those cases, splitting the same dataset across 1TB SATA SSDs won't provide as much performance boost as moving to multi-TB NVMe drives.

The most powerful NVMe SSDs like the Memblaze PBlaze5 have shown that modern 3D TLC NAND can outperform older MLC-based drives in almost every way. With a sufficiently high queue depth, the PBlaze5 can even approach the throughput of Intel's Optane SSDs for many workloads: the PBlaze5 offers similar sequential write performance and better sequential read performance than the Intel Optane P4800X. The random write speed of the PBlaze5 is slower by a third, but for random reads it matches the Optane SSD and with careful tuning it can provide substantially more random read throughput than a single Optane SSD. All of this is from a drive that's high-end even by enterprise standards, but is actually a generation behind the other flash-based SSDs in this review.

Overall, there's no clear winner from today's review, and no obvious sweet spot in the enterprise SSD market. Samsung still puts out a very solid product lineup, but they're not the only supplier of good 3D NAND anymore. Intel's 64-layer 3D TLC is just as fast and power efficient, though Intel's current use of it the P4510 suggests that they're still a bit behind on the controller side of things—the Samsung 983 DCT's QoS is much better even if the throughput is a bit lower. And the Memblaze PBlaze5 shows that the brute force power of the largest SSD controllers can overcome the disadvantage of being a generation behind on the flash memory; we look forward to testing their more recent models that upgrade to 64-layer 3D TLC.

We're still feeling our way with how we want to present future Enterprise SSD reviews, so if you have comments on what you'd like to see, either product wise or testing methodology, then please leave a comment below.

Mixed I/O & NoSQL Database Performance
Comments Locked

36 Comments

View All Comments

  • Greg100 - Thursday, January 3, 2019 - link

    In Europe we have got:

    Samsung SSD 860 QVO 4TB for € 579 and
    Samsung SSD 860 EVO 4TB for € 625

    So I think it’s time for something bigger and faster…
  • Greg100 - Thursday, January 3, 2019 - link

    especially, when we have many 15.36TB SAS SSDs from every major manufacturer:

    Western Digital Ultrastar DC SS530 15.36TB
    Seagate Nytro 3330 15.36TB
    Toshiba PM5-R 15.36TB
    Samsung PM1643 15.36TB

    with Samsung PM1643 even double capacity: 30.72TB

    ...but we can't use SAS SSD on consumer motherboard...

    so I count on new U.2 drives.
  • phoenix_rizzen - Friday, January 4, 2019 - link

    Well, you can use SAS drives with consumer-oriented motherboards, you just need to add an SAS HBA via one of the PCIe slots. :) An extra cost, for sure, but it's certainly doable. LSI 92xx-8i or similar aren't that expensive.
  • Greg100 - Saturday, January 5, 2019 - link

    Thank you for your advice. You're right, SAS SSDs can be connected to a consumer motherboard, but does it make any sense?

    SAS SSDs are only given as an example that there are even larger than 8TB SSDs available on the market. It's a pity that they are much more expensive for GB than Intel U.2 drives and much slower. The fastest of the above:

    Western Digital Ultrastar DC SS530
    15.36TB
    2150MB/s (Read)
    2120MB/s (Write)

    We can get instead:

    Intel DC P4510
    8TB
    3200MB/s (Read)
    3000MB/s (Write)
    £2,300.78
    (Bleepbox on UK ebay; new, in stock)

    so....
    2x more expensive per GB than Samsung SSD 860 EVO 4TB
    6x faster (sequentially) than Samsung SSD 860 EVO 4TB

    Is it worth its price?

    Is 6x faster CPU worth 2x higher price?
  • Greg100 - Saturday, January 5, 2019 - link

    If someone has to use SAS drives, they pay more for lower performance, but they don't have to rebuild the entire infrastructure.

    For the consumer who wants:

    -big
    -fast
    -cheap

    I think that Intel DC P4510 is the best option

    If someone can find
    8TB SSD 3000MB/s+ read
    cheaper than £2,300.78 let me know...
  • Billy Tallis - Thursday, January 3, 2019 - link

    I don't think we'll see 8TB consumer-oriented drives in 2019, and if we do, they'll make even less sense than Samsung's premature introduction of the 4TB 850 EVO did. Going beyond 8TB will require a new generation of controllers for the consumer market, with support for more DRAM, and that may not be economical until 2TB and 4TB drives are as affordable as 1TB drives are now.
  • Greg100 - Thursday, January 3, 2019 - link

    Thank you for your opinion and information on compatibility.

    So... if I will not see something interesting on CES... I think it is time for Intel DC P4510 8TB (data) and maybe Intel Optane 905P (boot, software)
  • Greg100 - Thursday, January 3, 2019 - link

    One more question:

    Do you know cause and solution to the issues with the 4TB Samsung drives, you describe here: https://www.anandtech.com/show/13633/the-samsung-8... ?
  • Billy Tallis - Thursday, January 3, 2019 - link

    I haven't been able to pin down the cause or fix. One of the troublesome 4TB 860s did start behaving again, but I'm not sure what part of my messing with it accomplished that and I haven't been able to replicate it with the other two. And the 4TB enterprise Samsung SATA drives (860 DCT and 883 DCT) have been trouble-free but haven't been subjected to the full consumer test suite yet.
  • Greg100 - Thursday, January 3, 2019 - link

    Thanks.

    When you will be able to pin down the cause or fix PLEASE make short article about it or include it with the future 860 DCT and 883 DCT consumer test. I think, it can be very important, especially that they are the biggest client SSDs and with last week significant price drop in Europe they are more affordable.

Log in

Don't have an account? Sign up now