Burst IO Performance

Our burst IO tests operate at queue depth 1 and perform several short data transfers interspersed with idle time. The random read and write tests consist of 32 bursts of up to 64MB each. The sequential read and write tests use eight bursts of up to 128MB each. For more details, please see the overview of our 2021 Consumer SSD Benchmark Suite.

QD1 Burst IO Performance
Random Read Random Write
Sequential Read Sequential Write

On the QD1 burst IO tests, the Inland Performance Plus tops the charts for both random and sequential writes, though in the latter case performance drops quite a lot when the drive is mostly full. Random read performance is merely average, and sequential reads are disappointingly in last place.

Sustained IO Performance

Our sustained IO tests exercise a range of queue depths and transfer more data than the burst IO tests, but still have limits to keep the duration somewhat realistic. The primary scores we report are focused on the low queue depths that make up the bulk of consumer storage workloads. For more details, please see the overview of our 2021 Consumer SSD Benchmark Suite.

Sustained IO Performance
Random Read Throughput Power Efficiency
Random Write Throughput Power Efficiency
Sequential Read Throughput Power Efficiency
Sequential Write Throughput Power Efficiency

On the longer IO tests that bring in some higher queue depths, the Performance Plus loses its first-place spot for random writes to the WD Black SN850, but it hangs on to first place for sequential writes. For both random and sequential reads it manages to improve its standings slightly, but the sequential read performance remains disappointing. Power efficiency isn't great on any of these four tests, but it's decent for sequential writes and more or less matches the flagship Gen4 drives from WD and Samsung.

Random Read
Random Write
Sequential Read
Sequential Write

The Inland Performance Plus does eventually reach top-tier performance for sequential reads, but it requires higher queue depths than the 980 PRO or SN850. For sequential writes, it has taken a clear lead by QD4 and maintains higher performance than any of the other drives can hit, with only a slight drop at the end of the test suggesting that the SLC cache might be starting to run out.

For random reads and writes, the Performance Plus simply doesn't scale up as high as its competitors, even with very large queue depths. The Samsung 980 PRO's maximum random write speeds are well beyond what any other drive hits, and for random reads the WD Black SN850 has a similarly large lead over the competition.

Random Read Latency

This test illustrates how drives with higher throughput don't always offer better IO latency and Quality of Service (QoS), and that latency often gets much worse when a drive is pushed to its limits. This test is more intense than real-world consumer workloads and the results can be a bit noisy, but large differences that show up clearly on a log scale plot are meaningful. For more details, please see the overview of our 2021 Consumer SSD Benchmark Suite.

At low rates, the mean latency from the Inland Performance Plus is actually higher than the 99th percentile latency, indicating there's a small number of extremely high-latency IOs skewing the average. The median latency starts at a very respectable 63µs, but the highest latency measured at low rates is close to 70ms—three orders of magnitude slower. This looks like the drive might be stalling while waking up from a sleep state, which it shouldn't even be entering given the minimal idle time between test phases. Above 120k IOPS, the 99th percentile latency jumps up to the millisecond range, which should only happen to a drive this high-end when it's pretty close to its maximum throughput. The Performance Plus does achieve respectable throughput that is a clear improvement over the Phison E16, but compared to WD and Samsung flagships the E18 drive is slower and has some mildly concerning performance quirks.

Trace Tests: AnandTech Storage Bench and PCMark 10 Advanced Synthetic Tests: Block Sizes and Cache Size Effects
Comments Locked

118 Comments

View All Comments

  • mode_13h - Sunday, May 16, 2021 - link

    > programs were doing their own thing, till OS's began to clamp down.

    DOS was really PCs' biggest Achilles heel. It wasn't until Windows 2000 that MS finally offered a mainstream OS that really provided all the protections available since the 386 (some, even dating back to the 286).

    Even then, it took them 'till Vista to figure out that ordinary users having admin privileges was a bad idea.

    In the Mac world, Apple was doing even worse. I was shocked to learn that MacOS had *no* memory protection until OS X! Of course, OS X is BSD-derived and a fully-decent OS.
  • FunBunny2 - Monday, May 17, 2021 - link

    " I was shocked to learn that MacOS had *no* memory protection until OS X! "

    IIRC, until Apple went the *nix way, it was just co-operative multi-tasking, which is worth a box of Kleenex.
  • Oxford Guy - Tuesday, May 18, 2021 - link

    Apple had protected memory long before Microsoft did — and before Motorola had made a non-buggy well-functioning MMU to get it working at good speed.

    One of the reasons the Lisa platform was slow was because Apple has to kludge protected memory support.

    The Mac was originally envisioned as a $500 home computer, which was just above toy pricing in those days. It wasn’t designed to be a minicomputer on one’s desk like the Lisa system, which also had a bunch of other data-safety features like ECC and redundant storage of file system data/critical files — for hard disks and floppies.

    The first Mac had a paltry amount of RAM, no hard disk support, no multitasking, no ECC, no protected memory, worse resolution, a poor-quality file system, etc. But, it did have a GUI that was many many years ahead of what MS showed itself to be capable of producing.
  • mode_13h - Tuesday, May 18, 2021 - link

    > Apple had protected memory long before Microsoft did

    I mean in a mainstream product, enabled by default. Through MacOS 8, Apple didn't even enable virtual memory by default!

    > The first Mac

    I'm not talking about the first Mac. I'm talking about the late 90's, when Macs were PowerPC-based and MS had Win 9x & NT 4. Linux was already at 2.x (with SMP-support), BeOS was shipping, and OS/2 was sadly well on its way out.
  • mode_13h - Sunday, May 16, 2021 - link

    > C has been described as the universal assembler.

    It was created as a cross-platform alternative to writing operating systems in assembly language!

    > a C program can be blazingly fast, if the code treats the machine as a Control Program would.

    No, that's just DOS. C came out of the UNIX world, where C programs are necessarily as well-behaved as anything else. The distinction you're thinking of is really DOS vs. real operating systems!

    > I'm among those who spent more time than I wanted, editing with Norton Disk Doctor.

    That's cuz you be on those shady BBS' dog!
  • mode_13h - Sunday, May 16, 2021 - link

    > I think there's been a view inculcated against C++

    C++ is a messy topic, because it's been around for so long. It's a litle hard to work out what someone means by it. STL, C++11, and generally modern C++ style have done a lot to alleviate the grievances many had with it. Before the template facility worked well, inheritance was the main abstraction mechanism. That forced more heap allocations, and the use of virtual functions often defeated compilers' ability to perform function inlining.

    It's still the case that C++ tends to hide lots of heap allocations. Where a C programmer would tend to use stack memory for string buffers (simply because its easiest), the easiest thing in C++ is basically to put it on the heap. Now, an interesting twist is that heap overrun bugs are both easier to find and less susceptible to exploits than on stack. So, what used to be seen as a common inefficiency of C++ code is now regarded as providing reliability and security benefits.

    Another thing I've noticed about C code is that it tends to do a lot of work in-place, whereas C++ does more copying. This makes C++ easier to debug, and compilers can optimize away some of those copies, but it does work to the benefit of C. The reason is simple: if a C programmer wants to copy anything beyond a built-in datatype, they have to explicitly write code to do it. In C++ the compiler generally emits that code for you.

    The last point I'll mention is restricted pointers. C has them (since C99), while C++ left them out. Allegedly, nearly all of the purported performance benefits of Fortran disappear, when compared against C written with restricted pointers. That said, every C++ compiler I've used has a non-standard extension for enabling them.

    > if C++, do things in an excessive object-oriented way

    Before templates came into more common use, and especially before C++11, you would typcially see people over-relying on inheritance. Since then, it's a lot more common to see functional-style code. When the two styles are mixed judiciously, the combination can be very powerful.
  • GeoffreyA - Monday, May 17, 2021 - link

    Yes! I was brought up like that, using inheritance, though templates worked as well. Generally, if a class had some undefined procedure, it seemed natural to define it as a pure virtual function (or even a blank body), and let the inherited class define what it did. Passing a function object, using templates, was possible but felt strange. And, as you said, virtual functions came at a cost, because they had to be resolved at run-time.

    Concerning allocation on the heap, oh yes, another concern back then because of its overhead. Arrays on the stack are so fast (and combine those buggers with memcpy or memmove, and one's code just burns). I first started off using string classes, but as I went on, switched to char/wchar_t buffers as much as possible---and that meant you ended up writing a lot of string functions to do x, y, z. And learning about buffer overruns, had to go back and rewrite everything, so buffer sizes were respected. (Unicode brought more hassle too.)

    "whereas C++ does more copying"

    I think it's a tendency in C++ code, too much is returned by value/copy, simply because of ease. One can even be guilty of returning a whole container by value, when the facility is there to pass by reference or pointer. But I think the compiler can optimise a lot of that away. Still, not good practice.
  • mode_13h - Tuesday, May 18, 2021 - link

    > though templates worked as well

    It actually took a while for compilers (particularly MSVC) to be fully-conformant in thier template implementations. That's one reason they took longer to catch on -- many programmers had gotten burned in early attempts to use templates.

    > Passing a function object, using templates, was possible but felt strange.

    Templates give you another way to factor out common code, so that you don't have to force otherwise unrelated data types into an inheritance relationship.

    > I think it's a tendency in C++ code, too much is returned by value/copy, simply because of ease.

    Oh yes. It's clean, side effect-free and avoids questions about what happens to any existing container elements.

    > One can even be guilty of returning a whole container by value, when the facility is there
    > to pass by reference or pointer. But I think the compiler can optimise a lot of that away.

    It's called (N)RVO and C++11 took it to a new level, with the introduction of move-constructors.

    > Still, not good practice.

    In a post-C++11 world, it's now preferred. The only time I avoid it is when I need a function to append some additional values to a container. Then, it's most efficient to pass in a reference to the container.
  • GeoffreyA - Wednesday, May 19, 2021 - link

    "many programmers had gotten burned in early attempts to use templates"

    It could be tricky getting them to work with classes and compile. If I remember rightly, the notation became quite unwieldy.

    "C++11 took it to a new level, with the introduction of move-constructors"

    Interesting. I suppose those are the counterparts of copy constructors for an object that's about to sink into oblivion. Likely, just a copying over of the pointers (or of all the variables if the compiler handles it)?
  • mode_13h - Thursday, May 20, 2021 - link

    > > "many programmers had gotten burned in early attempts to use templates"

    > It could be tricky getting them to work with classes and compile.

    I meant that early compiler implementations of C++ templates were riddled with bugs. After people started getting bitten by some of these bugs, I think templates got a bad reputation, for a while.

    Apart from that, it *is* a complex language feature that probably could've been done a bit better. Most people are simply template consumers and maybe write a few simple ones.

    If you really get into it, templates can do some crazy stuff. Looking up SFINAE will quickly take you down the rabbit hole.

    > If I remember rightly, the notation became quite unwieldy.

    I always used a few typedefs, to deal with that. Now, C++ expanded the "using" keyword to serve as a sort of templatable typedef. The repurposed "auto" keyword is another huge help, although some people definitely use it too liberally.

Log in

Don't have an account? Sign up now