Device Features and Characteristics

A quick overview of the internal capabilities of the storage devices is given by CrystalDiskInfo. The drive information doesn't change based on the host. This also serves to verify that S.M.A.R.T access (and despite not being mentioned explicitly, TRIM support also) is available irrespective of the port that the drives connect to.

Drive Information

CrystalDiskInfo confirms the internal SSDs being used in the WD_BLACK P50 and the SanDisk Extreme PRO Portable SSD v2 to be the SN750E and SN730E respectively. Prior to looking at the usage characteristics of the various drives, it is helpful to compare their specifications and also take a look at the internals.

Direct-Attached Storage Characteristics
Aspect
Upstream Port USB 3.2 Gen 2x2 Type-C USB 3.2 Gen 2x2 Type-C
Bridge / Controller ASMedia ASM2364
SanDisk 20-82-007011
ASMedia ASM2364
SanDisk 20-82-007011
Flash SanDisk BiCS 4 96L 3D TLC SanDisk BiCS 3 64L 3D TLC
Power Bus Powered Bus Powered
     
Physical Dimensions 57.34 mm x 110.26 mm x 10.22 mm 62 mm x 118 mm x 14 mm
IP Rating IP55 N/A
Weight 85 grams (without cable) 115 grams (without cable)
Cable USB 3.2 Gen 2x2 Type-C to Type-C
USB 3.2 Gen 2 Type-C to Type-A
(30cm each)
USB 3.2 Gen 2x2 Type-C to Type-C
USB 3.2 Gen 2 Type-C to Type-A
(30cm each)
     
S.M.A.R.T Passthrough Yes Yes
UASP Support Yes Yes
TRIM Passthrough Yes Yes
Encryption Support Hardware (SanDisk SecureAccess App) N/A

The key difference is that our review samples have a SN750-class NVMe SSD equipped with 64L 3D TLC in the WD_BLACK P50, and 96L 3D TLC in the SanDisk Extreme PRO v2. The former doesn't have hardware encryption enabled (and even software encryption with the WD Security app is not available). The latter uses the SanDisk SecureAccess App to activate the hardware encryption.

The teardown galleries above shows the significant amount of thermal design in both drives. The presence of the ASMedia ASM2364 bridge chip in both drives is also confirmed. The SanDisk Extreme PRO has a significant chunk of aluminum directly in touch with the thermal pad / covering for the heat-generating components of the internal boards. A clasp is also seen on the Type-C port to help achieve the IP55 rating. In contrast, the WD_BLACK P50 appears over-engineered with a large number of thermal pads, a separate aluminum heat-sink, and a thermal pad on top of that heat sink. Since the underside of the P50 is plastic, a metal flap is also placed between it and the internal SSD assembly. Overall, the thermal design appears fairly effective, and its evaluation report is provided in a subsequent section.

Testbed Travails Synthetic Benchmarks - ATTO and CrystalDiskMark
Comments Locked

81 Comments

View All Comments

  • epobirs - Wednesday, October 7, 2020 - link

    This was tried and rejected by the world already, under the name SATA Express. A whole generation of motherboards shipped with SATA Express ports but nobody made any drives of any sort to use with the port. (IIRC, WD had a demo at Computex one year.) The closest I ever came to using a SATA Express port for anything was the clever ASrock adapter that let you repurpose the port to create a pair of USB 3.1 ports, Type A and C with 10Gb/s support, that went into a front drive bay.

    Once NVMe caught on it just didn't make much sense to pursue a direct successor to SATA.
    https://en.wikipedia.org/wiki/SATA_Express
  • Hrunga_Zmuda - Tuesday, October 13, 2020 - link

    Exactly.
  • StormyParis - Monday, October 5, 2020 - link

    Performance is one thing, and I understand it's the primary concern in some cases.
    In most cases though, compatibility not performance is the main issue, and we run into 2 problems:
    1- it's hard to know what *should* work. A USB-C port doesn't mean anything at all by itself, there's not even a color code as a quick hint. Any consumer tech that requires to RTFM is failing at a very basic level.
    2- even stuff that should work sometimes doesn't. Apparently USB-PD charging on MacBooks works much better on one side than on the other. I've seen a lot of issues with video, even simple storage/LAN stuff.
    The goal of USB is laudable. The way they're going at it is laughable.
  • drexnx - Monday, October 5, 2020 - link

    yeah, USB used to mean it just worked, didn't have to think about it or read anything. Literally plug and play.

    now? no clue, unless the mfg puts iconography to let you know what each port can do.
  • imaheadcase - Monday, October 5, 2020 - link

    Even with speeds it varies so wildly by device its silly. The real only advantage i found with a SSD for portable drive is the size and weight is better. Performance is Meh, because most people aren't using it for own devices so much as plugging it into someone elses. I've seen top selling drives that will barely get usb 2.0, and even then the read/write to usb speed is insanely different between devices.
  • imaheadcase - Monday, October 5, 2020 - link

    I forgot to mention that even cables mater so much, i'm not talking about scam monster cable stuff, i'm talking just even same brand to brand, can get a bulk 20 pack of usb-c cables, and each one could be different in speed.
  • BeethovensCat - Monday, October 5, 2020 - link

    Agree!! A complete joke! Have Patriot and a Sandisk SSD and they don't work with the same USB C cable. How can USB have come to this?
  • drexnx - Monday, October 5, 2020 - link

    this is really getting back to the dark ages of RS232 where there were different baud rates for different peripherals, now that I think about it
  • dontlistentome - Monday, October 5, 2020 - link

    I'll bite. Bit of a correction on diagram, more complexity needed.
    USB 1.0 was 1.5Mbps, USB 1.1 was 12Mbps
  • repoman27 - Monday, October 5, 2020 - link

    Nope. USB 1.0 defined both low-speed 1.5 Mbit/s and full-speed 12 Mbit/s signaling. It just sucked, which is why 1.1 was released to fix a bunch of issues that were encountered in real-world implementations.

Log in

Don't have an account? Sign up now